Fourier Transform and Power/Phase analysis
傅里叶变换简介[1]
经傅里叶变换生成的函数 ${\hat {f}}$ 称作原函数 $f$ 的傅里叶变换,亦称**频谱**。通常情况下, $f$ 是实数函数,而 ${\hat {f}}$ 则是复函数,用一个复数来表示振幅和相位。
一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”(连续函数的傅里叶变换)。定义傅里叶变换有许多不同的方式。本文中采用如下的定义:(连续)傅里叶变换将可积函数 $f:\mathbb {R} \rightarrow \mathbb {C}$ 表示成复指数函数的积分或级数形式。即:
$$
{\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-2\pi ix\xi }dx = \int _{-\infty }^{\infty }f(t)\ e^{-2\pi ift }dt
$$
- $ξ$, $f$为任意实数
自变量x表示时间(以秒为单位),变换变量 $ξ$ 表示频率(以赫兹为单位)。在适当条件下,${\hat {f}}$ 可由逆变换(inverse Fourier transform)由下式确定 $f$:
$$
f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )\ e^{2\pi i\xi x}d\xi
$$
- $x$ 为任意实数
对于傅里叶系数(Fourier Coefficient)的解释[^Source]:
- Amplitude spectrum is magnitude of Fourier coefficients
- Phase spectrum is angle of Fourier coefficients
计算能量与功率[2]
对于信号 $f(t)$ ,其能量 $E$ 的定义为:
$$
E = \lim_{T \rightarrow \infty} \int^{T}_{-T} \lvert{f(t)}\rvert^{2}dt
$$
其功率 P 的定义为:
$$
P = \lim_{T \rightarrow \infty} \frac{1}{2T} \int^{T}_{-T} \lvert{f(t)}\rvert^{2}dt = \frac{E \text{ (Total Energy)}}{\text{Total time}}
$$
可以用物理学中电阻的功率计算来便于理解:
对于电阻R,施加电压$f(t)$,在区间(-∞,+∞)上,其能量 $E$ 就是:
$$
E = \frac{1}{R} \int^{\infty}_{-\infty} \lvert{f(t)}\rvert^{2}dt
$$
在信号处理的过程当中,取R的值为1,即为该信号的能量计算公式。
计算相位
相位简介[3]
相位(英语:Phase)又称位相、相、相角,是描述信号波形变化的度量。
计算
对于傅里叶变换之后的数据(Fourier Coefficient,为一个复数),可以通过求该数据的相位角来获得其相位(Phase)。
在MATLAB中可以使用angle()
函数实现:
1 |
|
计算功率谱密度
开始之前需要注意的地方:
- Two limitations of the Fourier-transform based frequency representation
- Changes in frequency structure over time are difficult to visualize
- EEG data violate the stationarity assumption of Fourier analysis
PSD简介
Power Spectral Density (PSD): A Power Spectral Density (PSD) is the measure of signal’s power content versus frequency. A PSD is typically used to characterize broadband random signals. The amplitude of the PSD is normalized by the spectral resolution employed to digitize the signal.
谱密度估计 (Spectral density estimation)<span class=”hint–top hint–rounded” aria-label=”Spectral density estimation - Wikipedia
[^Source]: Fourier coefficients - YouTube“>[4]
Many other techniques for spectral estimation have been developed to mitigate the disadvantages of the basic periodogram. These techniques can generally be divided into non-parametric, parametric, and more recently semi-parametric (also called sparse) methods。
1. non-parametric spectral density estimation
Following is a partial list of non-parametric spectral density estimation techniques:
- Periodogram, the modulus squared of the discrete Fourier transform
- Bartlett’s method is the average of the periodograms taken of multiple segments of the signal to reduce variance of the spectral density estimate
- Welch’s method a windowed version of Bartlett’s method that uses overlapping segments
- Multitaper is a periodogram-based method that uses multiple tapers, or windows, to form independent estimates of the spectral density to reduce variance of the spectral density estimate
- Least-squares spectral analysis, based on least squares fitting to known frequencies
- Non-uniform discrete Fourier transform is used when the signal samples are unevenly spaced in time
- Singular spectrum analysis is a nonparametric method that uses a singular value decomposition of the covariance matrix to estimate the spectral density
- Short-time Fourier transform
- Critical filter is a nonparametric method based on information field theory that can deal with noise, incomplete data, and instrumental response functions
2. parametric spectral density estimation
Below is a partial list of parametric techniques:
- Autoregressive model (AR) estimation, which assumes that the nth sample is correlated with the previous p samples.
- Moving-average model (MA) estimation, which assumes that the nth sample is correlated with noise terms in the previous p samples.
- Autoregressive moving average (ARMA) estimation, which generalizes the AR and MA models.
- MUltiple SIgnal Classification (MUSIC) is a popular superresolution method.
- Maximum entropy spectral estimation is an all-poles method useful for SDE when singular spectral features, such as sharp peaks, are expected.